Distance between (3,-7) and (9,6)




Here we will show you how to find the distance between the points (3,-7) and (9,6) using a formula. In other words, you have the points (3,-7) and (9,6) on a two-dimensional graph with an x-axis and a y-axis, and you want to find the distance between the two points.


We start by labeling and coloring the points (3,-7) and (9,6) so it is easy to follow along:

(3,-7) and (9,6) = (x₁,y₁) and (x₂,y₂)

x₁ = 3
y₁ = -7
x₂ = 9
y₂ = 6

Next, we will show you the formula you can use to calculate the distance between two points. The formula to calculate the distance (d) between two points, such as (3,-7) and (9,6), is as follows:

d = √(x₁ - x₂)² + (y₁ - y₂

The next step is to enter our points into the formula. When we enter (3,-7) and (9,6) into the formula, we get this:

d = √((3) - (9))² + ((-7) - (6)

All we need to do now is solve the equation above. Here is the math and the answer to the distance (d) between the points (3,-7) and (9,6):

d = √((3) - (9))² + ((-7) - (6))²

d = √(-6)² + (-13)²

d = √36 + 169

d = √205

d ≈ 14.3178


Distance Between Two Points Calculator
Need to calculate a similar problem? No problem! Go here to calculate the distance between another set of points.

Find the distance between the points (3,-7) and (9,7)
Here is the next distance between two points that we have calculated for you.






Copyright  |   Privacy Policy  |   Disclaimer  |   Contact